GMAT Sample Questions Set-2
Categories: GMAT (Graduate Management Admission Test)
Question: Architects and stonemasons, huge palace and temple clusters were built by the Maya without benefit of the wheel or animal transport
A. huge palace and temple clusters were built by the Maya without benefit of the wheel or animal transport
B. without the benefits of animal transport or the wheel, huge palace and temple clusters were built by the Maya
C. the Maya built huge palace and temple clusters without the benefit of animal transport or the wheel
D. there were built, without the benefit of the wheel or animal transport, huge palace and temple clusters by the Maya
E. were the Maya who, without the benefit of the wheel or animal transport, built huge palace and temple clusters
Answer: (c)
Question: A sum of $200,000 from a certain estate was divided among a spouse and three children. How much of the estate did the youngest child receive?
(1) The spouse received ½ of the sum from the estate, and the oldest child received ¼ of the remainder.
(2) Each of the two younger children received $12,500 more than the oldest child and $62,500 less than the spouse.
A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D. EACH statement ALONE is sufficient.
E. Statements (1) and (2) TOGETHER are NOT sufficient.
Answer: (b)
Question: A certain bakery has 6 employees. It pays annual salaries of $14,000 to each of 2 employees, $16,000 to 1 employee, and $17,000 to each of the remaining 3 employees. The average (arithmetic mean) annual salary of these employees is closest to which of the following?
A. $15,200
B. $15,500
C. $15,800
D. $16,000
E. $16,400
Answer: (c)
Question: According to the Tristate Transportation Authority, making certain improvements to the main commuter rail line would increase ridership dramatically. The authority plans to finance these improvements over the course of five years by raising automobile tolls on the two highway bridges along the route the rail line serves. Although the proposed improvements are indeed needed, the authority's plan for securing the necessary funds should be rejected because it would unfairly force drivers to absorb the entire cost of something from which they receive no benefit.
Which of the following, if true, would cast the most doubt on the effectiveness of the authority's plan to finance the proposed improvements by increasing bridge tolls?
A. Before the authority increases tolls on any of the area bridges, it is required by law to hold public hearings at which objections to the proposed increase can be raised.
B. Whenever bridge tolls are increased, the authority must pay a private contractor to adjust the automated toll-collecting machines.
C. Between the time a proposed toll increase is announced and the time the increase is actually put into effect, many commuters buy more tokens than usual to postpone the effects of the increase.
D. When tolls were last increased on the two bridges in question, almost 20 percent of the regular commuter traffic switched to a slightly longer alternative route that has since been improved.
E. The chairman of the authority is a member of the Tri State Automobile Club that has registered strong opposition to the proposed toll increase.
Answer: (d)
Question: If n is a member of the set {33, 36, 38, 39, 41, 42}, what is the value of n?
(1) n is even.
(2) n is a multiple of 3.
A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D. EACH statement ALONE is sufficient.
E. Statements (1) and (2) TOGETHER are NOT sufficient.
Explanation:
(1) This implies that n s 36, or 38, or 42. However, there is no further way to choose among these numbers as the single value of n; NOT sufficient.
(2) This implies that it could be 33, 36, 39, or 42. Again there is no further way to distinguish the value of n, NOT sufficient.
Answer: (e)